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The cluster expansion for the classical and the quantum canonical partition 
function are related to the Bell polynomials. This observation is exploited in 
derivation of a set of recursion relations that render tractable numerical evalua- 
tion of quantities such as mean cluster size distributions and pressure isotherms. 
The exact volume dependences of properties of an ideal Bose gas are calculated 
under periodic boundary conditions. Numerical calculations with volume- 
independent cluster integrals show bimodal distributions in the mean cluster 
weight for two- and three-dimensional ideal Bose gases at sufficiently low 
temperature and high density. The variation of the size at which the liquid 
(condensate) peak appears indicates that the liquid clusters are macroscopic in 
macroscopic systems. The similarity between the Bose-Einstein condensation 
and the sol---~gel transition in nonlinear chemically polymerizing systems is 
discussed. When the exact volume dependence of the cluster integrals is taken 
into account, the mean cluster weight distribution becomes "chair shaped" 
rather than bimodal and displays no diagonal long-range order in the canonical 
ensemble. The "Kac density" for an ideal Bose gas implies that in the canonical 
ensemble the Ursell function satisfies a cluster property in the limit in which the 
coordinates of the particles are widely separated. 

KEY WORDS: Cluster expansion; Bell polynomials; Bose-Einstein con- 
densation; cluster size distribution; Kac density 

1. INTRODUCTION 

Bose-Einstein condensation (BEC) in finite systems(l'2) has been the sub- 
ject of renewed interest, because this "transition" in ideal Bose systems 
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(IBS) provides a model, albeit a rather crude one, of the superfluid 
transition in real helium. In recent years several authors (2) have carried out 
analytic calculations of the effects of finite size and of surfaces on its 
critical behavior. 

In this paper a new formalism is introduced for calculation of cluster 
size distributions in IBS: we relate the question of formation of diagonal 
long range order (DRLO) in IBS to that of bimodality in the ensemble 
average cluster weight distribution. 

For a system of N bosons enclosed in a hypercube of volume L d, 
where d is the dimensionality of the system and L is the length of a side of 
the cube, Kahn and Uhlenbeck have shown that the quantum mechanical 
partition function QN(T, L d) can be written as a cluster expansion (3) in the 
form 

QN(T,L a) = Nt  ~ I'I (1.1) 
{ink) k =  1 m k [  

km k = N 

analogous to the well-known Mayer formula for classical particles. The 
bk(T, La)'s are the kth connected cluster integrals, in which the symmetry 
properties of otherwise noninteracting bosons play a mathematical role 
equivalent to that of a potential energy of interaction in the case of 
interacting particles in a classical gas. ~ is the thermal wavelength and the 
mk'S are integers that are positive or zero. Thus, the evaluation of thermo- 
dynamic properties for any system involves two nontrivial steps: calcula- 
tions of the connected cluster integrals and evaluation of the partition 
function through Eq. (1.1). 

In Section 2, the partition function of Eq. (1.1) for a system of N 
particles Qu(T,L a) is shown to be related to the Nth Bell polynomial. (4'5) 
Exploiting the properties of the Bell polynomials, we find a recursion 
relation among them and apply it to QN+ 1( T, La) �9 In Section 2.2, appropri- 
ate generating functions are defined that enable derivation of simple 
recursive formulas for the cluster size distribution and such thermodynamic 
quantities as pressure isotherms. 

It should be emphasized that the methodology in Section 2 is general 
and can be applied to a wide class of many-body systems. The main 
requirement is that some information be available about the behavior of 
either the connected cluster integrals or the star (doubly connected) inte- 
grals. We have, for example, been able to study the cluster size distribution 
for classical systems (6'7) interacting via the Lennard-Jones or the square- 
well potential. For such classical systems, the first five star integrals (8) are 
known. Details of such calculations are beyond the scope of this paper and 
are to be discussed elsewhere. (6'7) 
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In Section 3.1 we treat in two- and three-dimensions the hypothetical 
case of IBS in which the volume-dependent cluster integrals bk(T, V) are 
replaced by their well-known values, bk(T, oo)=-bk(T), in the infinite- 
volume limit. Although the problem of evaluating the more realistic vol- 
ume-dependent bk(T, V) and using them in the calculations of thermody- 
namic properties is tractable and treated in Section 3.3, the hypothetical 
case involving the bk(T, oo) is devoid of interest in that it has been treated 
by other methods, the results of which can provide a check on the methods 
of this paper. Results are obtained in Section 3.1 for the cluster size 
distribution, ~k(T, V, N), in this hypothetical case, results which signal the 
explosive growth of clusters to macroscopic size. In a graph with k ~  as 
ordinate and k as abscissa, a vertical scaling of the gas peak as contrasted 
with a horizontal scaling of the "liquid" (condensate) peak with varying 
system size N clearly shows that in macroscopic systems, the liquid clusters 
are macroscopic. These results of Section 3.1 throw some new light onto the 
similarity (5'9']~ between the BEC of an ideal Bose gas and the equilibrium 
sol ~ gel transition. This is discussed in Section 3.2. 

In Section 3.3, a technique is outlined that enables calculation of the 
exact volume dependence of the connected cluster integrals of IBS enclosed 
in a hypercube of volume L d, only periodic boundary conditions being 
discussed in this paper. The main emphasis in this section is on study of the 
effect of volume dependence of bk(T, V) on the cluster size distribution, 
i.e., on the existence or nonexistence of DLRO of IBS in the canonical 
ensemble. Numerical calculations with the exact set of bk(T, V) give results 
for the distribution k~g(T, V,N) that are significantly different from those 
obtained for the more artificial case treated in Section 3.1. The results 
obtained for this more realistic case in Section 3.3 are discussed in detail in 
Appendix B, in terms of the cluster property of the Ursell functions. Our 
conclusions are summarized in Section 3.4. 

2. RECURSION FORMULAS 

2.1. Partition Function and Bell Polynomials 

The Bell polynomials (4) studied extensively by E. T. Bell arise in an 
effort to simplify the taking of the nth derivative, H,(x), of a composite 
function, 

H(x) = F(g(x))  (2.1) 

It is clear that 

H] = Fl(g(x))g~(x ) =_ F~g, 
(2.2) 

HE = F1 g2 + G2 g~ 
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By mathematical induction, it follows that 

H n  = F 1 A n , (  g ,  . . . . .  gn)  + " " " + F . A . . (  g~ . . . . .  g . )  (2.3) 

A . j ( g  1 . . . . .  g . )  is a homogeneous polynomial of degree j in gl . . . . .  g.. 
Thus, the study of H n can be reduced to study the structure of Bell 
polynomials 

Y n (  g l  , " " " , g.) = ~ A , j (  ga , " " , g , )  (2.4) 
j = l  

Let F ( g ( x ) )  = e g(x) in (2.1); this gives the simple formula 

Y , (  g l  , . . . , g , )  = e - g ( x )  dn  e - g ( x )  ~ e - g D n e g  (2.5) 
d x  n 

From this formula, a recurrence relation for the Bell polynomials can be 
derived: 

Yn+ l(  g l  , g2 . . . . .  g.+l) = e-gDnx + leg  

n 

n - g  n - k  g D k = ~] ( ) [ e  D ~  e ] x g  1 
k=O -k -  

(2.6) 

(2.7) 

(2.8) 

Then 

r' lnB(t)  - gn ~.v (2.101 
n = l  

To get an explicit representation formula for the Bell polynomials, (2.10) is 
exponentiated: 

," 2 
n=0 n• (2.11) 

(ink) k = l  
kmk = n 

Comparing the coefficient of t n on two sides yields 

l Y I ( g k )  mk 1 (2.121 
Yn = n ! ~ -~.  i n k !  

( m k }  k = 1 

kmk = n 

n 

- 0  k Y , - k  g l  . . . . .  g n - k  +l 

This is the crucial equation exploited in this work. 
An explicit form for Yn(gi . . . .  , g,) remains to be found. The generat- 

ing function of the Bell polynomials is defined as 

y " t n  (2.9 t 
8 ( 0  = 

n = O  n .  
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From equations (2.12) and (1.1), it is noted that the partition function 
for a system of N particles enclosed in a volume V at temperature T is 
related (5) to the Nth Bell polynomial: 

( Vb, 2 Vb 2 Vbj VbN)  
QN(T,V)  = Y:v 1!--s y , X---T, . . . j!  2t---y . . . . .  U ! - - ~  (2.13) 

where bj is the j th  connected integral. 
The mathematical structure of the partition function for volume- 

independent bj(T) can be shown to lie in the Umbral algebra. (11~ Further, 
this algebra can be used for rederivation (12~ of Mayer's "first theorem ''O3~ 
and the recursion relation for Bell polynomials. 

2,2. Cluster Size Distribution and Pressure 

As long as the bk's are positive definite, an average number of 
mathematical clusters ~k(T, V,N) of size k can be defined as 

ink(T, V ,N)  = N m~ I-I QN(T, V), ~ , jmj= N (2.14) 
{ mj } j= l mj ! ~k amj j 

Note that since the bj's are positive definite, the "statistical" weight factor 
I~Y= l( Vbj)%/mj ! x a~ is well defined. 

One can simplify Eq. (2.14) by defining an appropriate generating 
function. Starting with the generating function for a multinomial expan- 
sion, 

( ~  Xk )M ~ tN N _ _ (  Xk ~m~ 
k=l ~ ' I tk  = M! ~ N! 1-I 1 

N=M N !  " 1~"-~. ] ' �9 {mk} k = l  m~! 
(2.15) 

~, kmk = N, ~ m k = M 

where x k is an arbitrary sequence, dividing both sides by M !, and then 
summing over M, we get 

exp ~ t k = 
k = l  N = 0  ~ ~ N! ~ 1-I ~ xk 

M = 0  (mk) k = l  mk! ~" 
km k = N, ~ m k = M 

(2.16) 

( } k=l m~! ~ (2.17) 

~-~, kkmk = N 

Note that, in deriving Eq. (2.16), we have interchanged sums�9 Now let 
xk = k!(Vbk/Xd). With this substitution Eqs. (2�9 and (2.17) provide 
equivalent generating functions one or the other of which is needed for 
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calculation of averages of thermodynamic quantities, 

( ~=1 bktk) k tN (M~= M~,N ) ~176 e x p  ) k - d v  "-~ F = E t N Z N (  T, V )  (2.18a) 
= N = O  ~ 0 N=O 

where 

N 1 ( Vbk Imk (2.18b) E r=N! E H ] 
M,N (ink) k= 1 

E kmk=N, ~ m k= M 

By taking the partial derivative with respect to bj on both sides of 
(2.17) one gets 

N [ ( V/)~ d)b~ ]mk 
~dd oo t N + J 

bjN~= ~ ~ N' ~ k~=l mk ' 
= ( i n k }  = �9 

~. krn k = N 

= k ZN N ( V b k / ~ d )  mk 

N=O--~--f.N ! E H mj mk ! ( 2 . 19 )  
�9 { i n k }  k = l  " 

kmk = N 

The left-hand side of Eq. (2.19) is 

Vbj k tN (N--J)!ZN-j 
X d (N -j)!  N=j  

(2.20) 

Therefore, 

oo N (Vbk) mk_ Vbj 
E tN E 1-Imj - ~a t N Z N _ j  (2.21) 

N = 0  (mk) k= 1 mk ! ~k dmk N=j'~a 
kmk = N 

Equation (2.21) permits writing ~k(T, V,N) in a form 6 that is simple to 
evaluate numerically: 

Vbk(T, V) ZN_k(T, V) Q~v(T, V) 
mk(T'V'N)- 2t d ZN(T,V ) ' ZN(T'V)- N! 

(2.22) 

6 We thank the referee for suggesting the following simple derivation of Eq. (2.22). One 
rewrites (2.14) as 

~jvak jmj +km k = N 

If one now lets the running variable m k --> mk+ 1 , then the expression for mk is precisely 
that given by Eq. (2.22). 
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The pressure of the system in the canonical ensemble is given by 
P/kB T= 0 / 3 V ) l n  QN(T, V). It may be shown that V(O/OV)QN(T, V) 
can be put in the following form: 

~ V  N N (Vbl)  m' 
V QN(T, V) = E E mk I-I )kdm ! 

{mr) k = l  / = l  mr! 
Z lmt=N 

V 0 b k (--I (Vb,) m, + 
(mt}Z Zk mk b~ ~ V t=lli mt ! Xd,~ ~ (2.23) 

Y, lmt= N 

T h u s ,  

P N N Obk(T, V) 
_ Vk=ll ~ ~k(T ' V,N) + k = l  ~ mk(T' V,N) bk( 1, V) ~V 

(2.24) 

where the bar denotes an average over the canonical ensemble. If b k is a 
function of the temperature only, then 

N 
PV _ ~, mk(T ' V,N) = M(T, V,N) (2.25) 
kBT k=l 

Here, M(T, V, N) is the total number of molecules in the system. Note that 
as N / V ~ O ,  M ( T , V , N ) ~ N  and Eq. (2.25) gives the usual ideal gas 
equation of state. The effect of volume dependence is, thus, to renormalize 
m k : m k ---> mk[1 + ( V/bk)(~bk/~ V)]. 

3. NUMERICAL RESULTS AND DISCUSSION 

3.1, Volume-Independent Cluster Integrals 

For every system of size N considered, the numerical calculation 
proceeds as follows: 

First, for each temperature the bt(T ) for l E [2, N] are computed with 
the use of Eq. (3.2). 

Second, for each volume considered, the partitionfunction QI(T, V) is 
found with Eqs. (2.8) and (2.13), and the mean cluster size ~k(T, V,N) for 
k E [1,N] is computed with Eq. (2.22) from QN_x(T, V) and the bk(T ). 

Finally, the canonical ensemble pressure is computed with Eq. (2.25). 
A few technical aspects of the computer program, which enabled 

computation of the partition function of a system consisting of large 
numbers of particles, require discussion. The partition function at high 
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temperatures and large volumes behaves as 

QN(T, V) oc V N (3.1) 

Thus, if V = 40.8 and N = 90, numerical evaluation of Eq. (3.1) in IBM 
370/148 would give domain error. One way to avoid domain error is to 
exploit the scaling properties of Eq. (1.1). Such a procedure enables 
evaluation of QN(T, V) for any N < 100 and for any density Vo/V E [0, 11. 
To handle values of N >I 120 and numbers larger than 1075, while preserv- 
ing precision in computing, however, one must use floating point instruc- 
tions with which the scaling is automatically done by the machine. 

The procedure described here can be used to compute the equation of 
state and mean cluster size distributions for two- and three-dimensional 
ideal Bose gas systems among which the number of particles varies from 
N = 128 to N = 1024. The connected cluster integrals for an ideal d- 
dimensional Bose gas are known (3) to be given by 

1 (3.2) bt - ld/2+ l 

an expression that is valid as long as (L/X) d >> 1. 
Figure 1 shows a plot of PX3/kBT versus v /h  3, where v = V/N. The 

smallest value of v/3, 3 that is accessible for numerical computation is 
restricted by the requirement (L/~)3>> 1. v/)k 3 is the "reduced" volume. 
We denote by (v/)t3)B the reduced volume at which bimodality first 
appears in the mean cluster weight distribution. Figure 1 clearly shows that, 
although as expected in a finite system there is no sharp transition, there 
exist two regions having different compressibilities. As the number of 
particles in the system is increased, the pressure in the canonical ensemble 

1.60 

F.- 

2 t.27 

0.94 
0.12 

N=512 
d = 5  

..... 0 ; 5  i 0,57 Q80 

v / y  

Fig. 1. Plot of P y / k B T  vs. v / y  for d = 3, where d is the dimensionality of the system and 
y = ~ 3 .  
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v /X 2 =o.o5 

N =5~2 

17.20 54.40 51.60 

k x l O  

Fig. 2. Plot of k~. k as a function of k, for two- and three-dimensional ideal Bose gases. 

seems to approach that in the grand canonical ensemble. (To be explicit, if 
the reduced volume is fixed at 0.1, for example, and P X 3 / k B T  computed as 
a function of N, it is found that (e2t3/kBT)t~v=~ - (P)t3/kBT)IN=512 = O. 
04, and this is 0.02 when N is 1024.) From this it can be concluded that a 
system of 512 particles mimics thermodynamic behavior reasonably well. 

The most important observation is that below a certain reduced 
volume the mean duster weight distribution is bimodal, for a finite three- 
dimensional system approximated in this way (volume-independent cluster 
integrals). In Figure 2, k~  k has been plotted against k at four values of 
reduced volume, one above and three below the critical reduced volume, 3 
(v/~k3)c = 0.38. The fraction of the weight of the system bound into clusters 
in a given size range is given by the area under each curve in that range. 
The second peak that exists below (v/X3)c grows continuously and uni- 
formly as the reduced volume is decreased. Not only does the separation 
between the two peaks become more and more pronounced as v / X  3 is 
decreased, but also the clusters represented in the second peak become 
more and more populated, eventually containing most of the particles of 
the system. Note that the values of (V/2t3)B defined by the distributions 
k ~  k are not the same as those for k2~k. The numerical results show also 
that the rates of change of (v/X3)B, as the system size is increased, are not 
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the same for k ~  k and k2~k . However, in both cases the rate of change of 
(v/)t3)B decreases with increasing N; for both moments (v/X3)B ap- 
proaches 0.38 in the thermodynamic limit. 

The second peak in the mean cluster weight distribution represents 
macroscopic clusters, i.e., an accumulated phase. The first peak represents 
small clusters, i.e., the gas phase. That an accumulation is possible is 
realized on noting that, although there is no interparticle potential in an 
ideal Bose gas, there exist positive spatial correlations between bosons 
arising solely from the symmetry properties of the N-particle wave function. 
The strict analog of the classical Boltzmann factor is the function Wse 

m 7 / "  WsE = E exp V E I rk-  r~kl 2 (3.3) 
k = l  (P) 

where /~ is a permutation operator. Note that W s e ~  1 when all the 
particles are far away from each other; WBE > 1 in those regions of 
configuration space where some particles are near together. This corre- 
sponds to an apparent attraction (14) between the particles of an ideal Bose 
gas. This attraction cannot be represented by a potential which has the 
property of additivity. Since the potential is always attractive, there must be 
a correspondence between mathematical and physical clusters. 

Analyzing the mean cluster weight distributions for systems consisting 
of 128, 256, and 512 particles, all at v / h  3 = 0.15, one finds that, although 
the occupation numbers for the smallest clusters increase approximately 
linearly with N, those of medium size clusters do not: expressed as a 
fraction of N the latter appear to approach zero. The second peak accom- 
modates an increasing population with increasing N in a different fashion 
from that seen in the first peak: the width of this second peak depicts a 
linear dependence on system size. 

Figure 3 shows the dependence on v /X  3 of the specific heat of a 
three-dimensional ideal gas of 256 bosons in this case for which volume- 
independent cluster integrals are used. The specific heat not only attains a 
rounded maximum, but displays the maximum slightly shifted to higher 
temperatures than in the case of the thermodynamic limit. C J N k  B tends 
toward 3 /2  as values of v /X  3 are increased. On increasing the number of 
particles in the system one sees a sharper transition. 

As expected, there is no sudden change in the slope of the graph of 
pressure vs. reduced density for a finite, two-dimensional ideal Bose gas 
(Fig. 4). However, close to v/)t2 ----- 0.1 the mean cluster weight distribution 
shows the gradual formation of a macroscopic duster (Fig. 2). It has been 
rigorously established that fluctuations in the local order parameter are 
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Fig. 3. The plot of inverse cluster size S -  1 as a function of reduced volume for both two- 
and three-dimensional Bose gas. 

large enough to destroy the formation of long-range order in a Bose fluid in 
systems of restricted dimensionality in the thermodynamic limit, provided 
that the density is bounded everywhere. (15'16) However, condensation can- 
not be excluded in a finite two-dimensional system. (17) In fact, a uniform, 
two-dimensional ideal Bose gas of finite area L 2 exhibits a condensation at 

Fig. 4. 
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Plot of Py/kBT vs. v/.v for d = 2, where d is the dimensionality of the system and 
y = )t 2. 
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a temperature approximately given by 

2qrh2p 
To -- k sm In N ' 

This corresponds to 

N (3.4) 
P - -  L 2 

( v )  l 
lnN (3.5) 

As the number of particles in the system is varied, the results indicate 
that, although the values of (V/2t2)B for k~  k are approximately in the range 
predicted by Eq. (3.5), the correspondence with Eq. (3.5) is represented far 
more accurately by k2~k . This is also the case in the finite three- 
dimensional Bose gas. 

A useful property of the cluster distribution is the "weight average" 
mean cluster size S, (]8) given by 

N 2-- Zk=lk m~(T, V,N) 
S -- U (3.6) 

Figure 5 shows plots of S-1 vs. reduced volume for two- and three- 
dimensional Bose gases. The slopes in both graphs change most rapidly at 
the value of v/h a which signals the appearance of the second peak in k~  k . 
Finally, it is noted that in the two-dimensional case the values of (v/hZ)B 
for both moments approach zero as N gets large. This is consistent with Eq. 
(3.5), which predicts that (V/h2)To must be zero for a two-dimensional ideal 

2 . 0 0  i , , , , I , , , ' I , ' L , i , 

1.75 

t.50 
Z 

-,> 
r  

1.25 t'-- 

b _ l  
- r -  

I.OO 
L L  

h i  

o_ 0 . 7 5  
O 3  i I i i i i I i i i i I i i I , 

0.2 0,4 0.6 0.8 
v/X 3 

Fig. 5. Plot of specific heat (C,~/NkB) vs. v/~ 3 for three-dimensional ideal Bose gas. The 
number of particles in the system is N = 256. 
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Bose gas in the thermodynamic limit. Note that this behavior is different 
from that of the three-dimensional case, for which (v/~3)B approaches a 
nonzero value. 

3.2. Bose Condensation and Polymer Gelation 

The results of the last section indicate that similarities (5'9']~ exist 
between the Bose condensation of IBS and the sol---> gel transition observed 
in the course of chemical polymerization of polyfunctional monomers. 

Recent work of Donoghue and Gibbs (19~ on the sol ~ gel transition in 
a finite polycondensing system has shown that the formation of a gel is 
signaled by the appearance of a second peak in the mean molecular weight 
distribution. Below a critical value of the extent of reaction, the mean 
number of polymers of size k is a monotonically decreasing function of size 
k, a size distribution corresponding to a pure sol phase. Beyond this critical 
degree of polymerization, however, there exists a second peak the maxi- 
mum of which is located at a size k which is monotonically increasing 
function of the number of structural units N. This second peak, represent- 
ing polymers of macroscopic size in macroscopic systems, is distinctive of 
the gel phase. It is interesting to compare the mean cluster size distributions 
of an ideal Bose gas obtained with volume-independent cluster integrals (in 
Section 3.1) to the mean cluster size distributions for the polymeric system 
computed by Donoghue and Gibbs. (19~ Such an analysis has been recently 
carried out in detail. (5' 9, 10~ Here we shall summarize the main results. 

In both the sol---> gel transition and the Bose-Einstein condensation, 
the mean cluster or polymer weight distribution is monotonic when either 
the extent of reaction (for polymers) or the density (for IBS) is less than a 
certain critical value. The large peak at small cluster size (maximum always 
at k = 1) represents sol molecules (mainly monomers and dirners) for 
polymer systems and excited particles in Bose systems. In both systems a 
second peak in the mean cluster weight distribution appears when a 
relevant variable (extent of reaction or density) exceeds a particular value. 
In IBS this second peak appears at a density which is close to the critical 
value determined by thermodynamic properties. Here the second peak in 
the bimodal cluster weight distribution represents the presence of a detect- 
able fraction of particles in the ground state. In both systems, as the 
number of particles in the system is increased, the second peak moves to 
higher cluster sizes, whereas the first peak remains in place (maximum at 
k = 1) and increases in amplitude. Consequently, in macroscopic systems, 
the cluster sizes of the second peak are macroscopic. The qualitative 
features of the cluster size distributions are strikingly similar in the two 
cases. 
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In gelation theory, the quantifies that play a role similar to that of the 
connected cluster integrals in a Bose gas are the w~(f)/n !. wn(f) is defined 
as the number of distinguishable types of n-mers that can be made from n 
f-functional units when both functional units and monomers are distin- 
guishable. (2~ The quantity wn(f) is given by Stockmayer, (2~ for the case 
when no ring formation is allowed, as 

- n)!  
w,,(f) =f"  (3.7) 

( i n  - 2n  + 2)! 

The asymptotic form of w,,(f)/n ! is 

wn(f) cc n-5/2 (3.8) 
n! 

This is precisely the behavior of the volume-independent cluster integrals of 
an ideal three-dimensional Bose gas. 

For the case of a classical gas in which an intermolecular potential is 
required for condensation, Born and Fuchs(21)have given an asymptotic 
form for the reducible cluster integrals b, (T)'s, 

b , ( T ) ~ n  -5/2 • kZflk~ k bo I (3.9) 
k=l 

where/3 k is the kth star integral, b o is a constant, and ~ is a Lagrangian 
multiplier. Once again we note the appearance of the factor t,/-5/2 in 
b . ( r ,  V). 

To emphasize the similarity between the sol---> gel transition and BEC 
of an ideal Bose gas, we present, in Table I, the correspondence of 
analogous physical quantities. 

One must bear in mind that neither of the two model systems partici- 
pating in this analogy is an adequate model for any real system. 

Table I .  Analogies between Gelation and Bose-Einstein Condensation 
i 

Sot--~ gel transition BEC of ideal Bose gas 

Sol molecules Particles in excited energy levels 
Gel molecules Condensed particles 
Extent of reaction a Reduced density ~3/v 
w,,(f) 
- -  (no rings) b.(T) 

n! 
Total number of macromolecules PV/Nk s T 

N 

M = E ~ k  
k=l 

Functionality f Not defined 
i ii i 



Blmodality and Long-Range Order In Ideal Bose Systems 699 

Indeed, inclusion of volume dependence in the cluster integrals elimi- 
nates (see Section 3.3) the bimodality in the k~k(T,V,N ) distribution 
obtained for Bose particles and therefore destroys the analogy. Allowance 
for rings ~~ in the structures allowed in gelation theory does, however, 
preserve the bimodality of the cluster size distribution given by that theory. 

3.3. Volume-Dependent Cluster Integrals 

In this section, a technique (1~ is developed which enables calculation 
of the exact volume dependence of the connected cluster integrals bl(T, V) 
for IBS under Periodic boundary conditions, and the effect of this on the 
cluster size distribution is studied. 

By definition, the average occupation number (hi) for a Bose system is 

(ni) = (e ~+~ - 1) -1 (3.10) 

where a = -I~/kT, and /~ is the chemical potential. The single particle 
energy e/ can be obtained by solving a one-dimensional free particle 
Schr6dinger equation subject to appropriate boundary conditions. We 
expand the average occupation number (ni) in powers of e~/kr: 

Nav = (3.11) 
i 

= E e-J Ee-J   (3.12) 
j = l  i 

For periodic boundary condition, the energy levels (for a three- 
dimensional system) En,n2n3 can easily be shown to be 

( h 2 n___~.~ n A + - -  , n i=0 ,+1 ,+2 ,+3  . . . .  i =  1,2,3 
E"'n2"3 2m L~ + L~ L3 3 

(3.13) 

where L1, L2, and L 3 are the lengths of the sides of a rectangular box, and 
m is the mass of each Bose particle. 

For convenience, we will consider the special case of a cubic system 
where L 1 = L 2 = L 3 = L. On rearranging Eq. (3.12) and on using (3.13), we 
get 

Nay = ~ zJ ~ exp -j~r(n~ + n~ + n~)(-~) (3.14) 
j = l  n l , ~ 2 , n 3  = - - ~  

where z is the fugacity and )t is the thermal wavelength. 
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The connected duster integrals bj(T, V) are defined by the relation 

_ L 3 
N . v  ~k 3 ~,je-J~bj(T, V) (3.15) 

On comparing Eq. (3.15) with Eq. (3.14), we can write down the volume- 
dependent cluster integral bj(T, V) as 

= 1 + 2 ~__ exp jbj (-~)3 = _j~rn e (3.16) 

For a finite system, one can use Eq. 0.16) to evaluate the cluster 
integrals. The infinite sum can be truncated after taking into account a 
sufficient number of terms, since the series is a rapidly convergent one. But 
the convergence is slow when the system size is increased. In order to 
obtain a series that is rapidly convergent for large system size we transform 
Eq. (3.16) by the use of Poisson summation formula. Let us start with the 
identity 

s F ( n ) =  s f(q) (3.17) 

where f(q) is the Fourier transform of the function F(n). Choosing F(n) to 
be e-J'~"2, we obtain the identity 

e-J'~"2= 2 2 c~ e-s~'' dn (3.18) 

= k ( ~ ~ 1/2e-~r2q2/j~~ (3.19) 
q=-m jo0 ! 

where r = r 2. Substituting Eq. (3.19) into Eq. (3.16) we get 

~, e x p -  (3.20) Jbj=L (jr q=-m 7 ~  

Inserting the value of r in Eq. (3.20) we get 

I jbj(T, V) = ~ q=-~" exp J- (3.21) 

Thus, the volume-dependent cluster integrals are 

1 1 + 2 exp - ~r(L/X) 2 (3.22) bj ( T' g ) = j ~7~ n = l 

The above method can easily be generalized to any number of dimen- 
sions. In Appendix A, we have shown that Eq. (3.22) can also be derived 
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from the classical result of Walfisz (22) on the number of lattice points Nd(x ) 
in a hypersphere in d dimension of radius x 1/2 

The only errors that propagate in this method of calculation stem from 
the evaluation of bj(T, V). In this calculation, we have truncated the 
infinite sum over n in Eq. (3.22) by an upper bound P = nmax, where 
nm~ = 1024. It is not necessary to assign such a large value to P, since the 
majority of the terms for n are essentially zero. Consider the elliptic 
function 

- -  = 1 + 2 ~ q~ (3.23) ~,~(o) = ( - z - f )  1/~ 

n = l  

where K(k) is 

and q = e-~rK'/K, 

K(k) =(./2 dO 
J0  ( 1  - k 2 sin2q~) 1/2 (3.24a) 

K'= K(k'), k ' =  (1 - k2) 1/2 (3.24b) 

From (3.22) and (3.23), one sees that 

[ jS/Zbj( T, V)]1/3= (/,3(0) (3.25) 

provided that K ' / K  = (L/h):(1/j) and q -- exp[-(Tr/ j ) (L/X) 2] are chosen. 
The errors involved in using Eq. (3.22) with all terms up to n -- P are 

now seen. For a typical value for q such as q = 0.005585, it is implied that 
~rK'/K = -5.0229609, and from (3.25) it follows that 03(0)= 1.01316917. 
By choosing P = 20 and calculating [jS/2bj(T, V)] 1/3 from Eq. (3.22) one 
gets 1.01317003. So even for small P the error is only in the sixth decimal 
place. 

We here summarize briefly the main results of our calculations with 
the exact set of b~(T, V), with emphasis on the k~k(T, V,N) distribution. 
An exhaustive study on the effect of system size on thermodynamic 
quantities, such as pressure, Helmoltz free energy, and specific heat under 
various boundary conditions, will be published (23) elsewhere. 

The cluster weight distribution (Figs. 6-8) at various densities reveals 
the following features. (1) At large volumes, and for both d =  2,3, the 
cluster weight distribution k ~  k decreases monotonically with increasing k. 
(2) Below a critical reduced volume a "chair-shaped" cluster weight distri- 
bution appears, the absence of bimodality implying absence of diagonal 
long-range order (this point is discussed in Section 3.4). (3) The chair- 
shaped distributions for two- and three-dimensional IBS are characterized 
by ranges of k values for which k ~  = 1.00. (4) The k~k(T, V,N) distribu- 
tion has different qualitative features in two and three dimensions: in three 
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Fig. 6. The mean cluster weight distribution for three-dimensional periodic Bose gas as 
computed with volume-dependent cluster integrals, at v/) t  3= 0.10. Abscissa k is the cluster 
size and ordinate km k gives the occupation number Nk of cluster size k multiplied by k. 
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Fig. 7. The mean cluster weight distribution for three-dimensional periodic Bose gas as 
computed with volume-dependent cluster integrals, at v/)~ 3 = 0.35. Abscissa k is the cluster 
size and ordinate k~k gives the occupation number ~k of cluster size k multiplied by k. 
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Fig. 8. The mean cluster weight distribution for three-dimensional periodic Bose gas as 
computed with volume-dependent cluster integrals, at v/)~ 3= 0.40. Abscissa k is the cluster 
size and ordinate k ~  gives the occupation number ~ of cluster size k multiplied by k. 

dimensions for all reduced volume V/~k 3 less than 0.30, increasing N 
increases the range of k values for which k~  k is precisely one, the same 
effect being achieved by fixing N and choosing progressively smaller values 
of v/~3; in two dimensions for a given v/~2< (v/?~2)~ ~0.12, increasing 
N decreases this range of k values, this result being consistent with the 
theorem of Mermin and Hohenberg, (15'16) which states the impossibility of 
a Bose condensation in an infinite two-dimensional IBS system. (5) In three 
dimensions the value of v/~3(~ 0.3) at which the chair-shaped distribution 
first appears does not coincide with the value of v/~ 3 at which the 
maximum of the specific heat data occurs (23) ; in two dimensions there is no 
specific heat maximum; thus, the location of a maximum in specific heat as 
a function of T is not a general crtierion of BEC in finite IBS. 

The results for the size distribution of clusters can be understood in 
terms of the absence of diagonal long-range order (DLRO) of IBS in the 
canonical ensemble. We discuss this in some detail in Appendix B. 

3.4. Summary 

The expansion of the canonical partition function, involving the cluster 
integrals, has been shown to be related to a set of polynomials, the so-called 
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Bell polynomials (12). This observation has permitted derivation of a recur- 
sion relation (~2) for the partition function, which, in turn, has rendered 
numerical evaluation of thermodynamic quantities tractable. 

With volume-independent cluster integralsl the key observation has 
been that, below a certain reduced volume, the mean cluster weight 
distribution becomes bimodal for finite two- and three-dimensional ideal 
Bose systems. The first peak represents small clusters, corresponding to the 
gaseous phase. I t  has also been seen that, even though the occupation 
numbers for the smallest clusters increase approximately linearly with N, 
the fractional occupations of medium-size clusters approach zero. The 
second peak at large sizes has been identified as representing the occur- 
rence of macroscopic clusters in the mean cluster weight distribution, i.e., 
an accumulated phase. In accommodates increasing mass with increasing N 
by an increase in cluster sizes rather than in occupations of each size. This 
"horizontal scaling" of the condensate peak, as contrasted with the vertical 
scaling of the gas peak, clearly demonstrates the macroscopic nature of the 
"liquid" clusters in a macroscopic system. 

In many respects, the behavior of this bimodal distribution is remark- 
ably similar to that obtained by Donoghue and Gibbs in a recent study of 
gelation in a finite nonlinear polymerizing system. For nonlinear polymers, 
a gel peak appeared naturally in the mean molecular weight distribution as 
the degree of polymerization was increased. The similarity between Bose 
condensation and gelation has been discussed in detail in Section 3.2. The 
analog was valid strictly for BEC of an ideal three-dimensional Bose gas in 
the grand canonical ensemble. 

The mean cluster weight has been seen to acquire a chair-shaped 
distribution instead of a bimodal distribution when the exact volume 
dependence of the cluster integrals is taken into account. This implies the 
absence of diagonal long-range order of IBS in the canonical ensem- 
ble.(24. 25) 

A remarkable property that has been seen in the kr~k(T, V, N) distribu- 
tions for both two- and three-dimensional IBS is that ranges of k values 
exist for which k ~  k = 1.0. In the two-dimensional case, for a given v/X 2 
< (v/XE)B, increasing N decreases the range of k values for which kN k -- 
1.0. This result is consistent with the theorem of Mermin and Hohenberg, 
which states the impossibility of Bose condensation in infinite two- 
dimensional IBS (provided the density is bounded everywhere). 

The form the Kac density (24'25) for ideal Bose systems rigorously 
implies that, although thermodynamic properties agree in the canonical and 
the grand canonical ensemble, fluctuations in the ground state do not 
agree. The Ursell functions have a cluster property, provided the particles 
are widely separated. A consequence of this result is that IBS do not exhibit 
DLRO in the canonical ensemble. 
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We propose that the appearance of a second peak well separated from 
the first in the average cluster weight distribution can be viewed as a 
physical criterion for the existence of diagonal long-range order in quantum 
systems displaying phase transitions. For the case of IBS, the value of 
temperature at which the mean cluster weight acquires a chair-shaped 
distribution is a more fundamental determinant of the BEC in finite 
systems (in the canonical ensemble) than the location of a specific heat 
maximum as a function of T. If the IBS is subjected to an external field, the 
chair-shaped distribution for the average cluster weight becomes a bimodal 
distribution. 

APPENDIX  A 

In this Appendix we show that the volume dependence of the con- 
nected cluster integrals of a three-dimensional IBS can be calculated from 
the classical result of Walfisz (22) on the number of lattice points Nd(x ) in a 
hypersphere in d dimensions of radius x 1/2. This number of lattice points is 
given by 

~ra/a + xd/4 Z n-d/aYd/2[2~r(xn)U2 ] (A1) Na(x) - r(1 + d/2) .,,.2.,,3=-~ 
n 2 = n 2 +  n 2 +  n 3 

with Ja/2 denoting the Bessel function of order d/2. Formal differentiation 
of (3.15) leading to the lattice-point density Od(x) has been rigorously 
justified by Oppenheim, (26) who has shown that 

Offx) = x -1/2 2 c~ '/2) (A2) 

O2(x) =~r 2 Jo(2~r(nx) ~/2) (A3) 
n b n  2 ~ - -  

p 3 ( x )  = 2 rx '/2 
n l ~ t / 2 , t / 3  = - -  O~ 

Boundary conditions lead to the relation 

sin(2rr(nx) 1/2) 

2~r(nx) l/a 
(A4) 

o(x) = (1/8) (03(x) + 3 o02(x) + oo(x)) (AS) 

where X = vrx/L = k 2. Combining Eqs. (A2), (A3), (A4), and (A5), one gets 

L3k2 ~ sin(2kn'/2) +03L2 k ~ Jo(2kLn I/2) 
p(k)-  27r2 nl,n2,n3= 2kLn 1/2 4~r 

3L + -~ ~_~ cos(2kLn l/2) + O13(k) (A6) 
h i =  - - ~  

where 0 = 0, - I ,  + 1 for periodic, Dirichlet, and Neumann boundary 
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conditions, respectively. In the case of the periodic boundary conditions, 
the average number of bosons N in a finite three-dimensional cubical box is 
now seen to be 

- L 3  ~e-J ,~{  1 ~-a exp[_  n2qr 1} 3 
Nav ~k 3 j = l  j3/2 n = - o o  -)--- (L/)~) 2 (A7) 

Hence, the connected cluster integrals got from Eq. (A7) agree with that 
given by Eq. (3.22). 

APPENDIX B 

The ideal Bose gas exhibits diagonal long-range order in the grand 
canonical ensemble. (27) It was demonstrated in Section 3.3 that use of the 
exact volume dependence of bj(T, V) leads to an absence of bimodality in 
the cluster size distribution in the canonical ensemble. To understand this 
result we investigate, in this appendix, the existence or nonexistence of 
diagonal long-range order of IBS in the canonical ensemble. 

In the grand canonical ensemble, let the generating function of any 
canonical function X be denoted by 

Xgr(O/, T, A) ---- ~ e-:WX 
Z(N, A, T) 

N = O  Zgr(Ot , A, T) (B1) 

where A denotes the bounded region with volume V. Let the corresponding 
canonical ensemble thermodynamic limit quantities be denoted by 

X(p, T) =-- lim X(N, A, T), P _ N (B2) 
v-~oo V 

Further, let 

Xg(a, T) -- lim Xg(a, A, T) 
V--> oo 

where a is determined by the sum rule 

Ng r _ ~ Are -'~N Z (N ,A ,T )  
O - ~ N=o Zg~(a,A, T) (B3) 

Clearly, X(p, T) and Xg(p, T) are related to each other by Kac density (24'2~) 
K(x, p, T) 

Xg(p, T) = foo~K(x, p, r )X (x ,  T) ax, x - N V (B4) 

where 

K(x ,p ,T) - -  lim Ve -"~ Z ( N , A , T )  
V"-> ~ Z g r ( a  , A, T) 
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First, it will be shown that for an IBG in which density is such that p < Pc, 
the canonical and the grand canonical states are the same. Above the 
critical density, the grand canonical states are the Laplace transform of the 
canonical states. (25' 28) 

Since the characteristic function is defined as 

(e i r  N ~ ~ Zgr(a - i r /  V , A , T )  (B5) 
/ A, T) 

we have 

l im  ( ir ~ = fo~176 dx (B6) 

But, 

/ i'r N i'rg3/2(a) (B7) 
n~ e -~ ) ~  ~t 3 - i'rp, for p < Pc 

where go(a) is the familiar Bose function. (3) Thus from Eqs. (B4) and (B7) 
we see that K(x ,p )=  6 ( x - p )  for p < Pc- If p > Pc, one must keep the 
'k = 0' term in Zg r and then let a ~ 0 as L--> oo 

i.c g3/2(a) ] _ In a -- i 'c /V (B8) ln(expi~'N ) = ( L ) 3 [  L --~ a 

In Eq. (B8) one can put a = 0 in g3/2 but for consistency a - l  = L3(p _ Pc) 
must be used in the logarithmic terms. Simple algebra then yields 

e ~ - i(o Pc)~']- (B9) 

The right-hand side of Eq. (B9) can be rewritten as 

; (xo ) 
1 ~176 exp - exp( - irx) (B 10) 

P Pc P -- Pc 

All of the steps discussed above have been rigorously derived by Kac (24'25) 
(unpublished), Cannon, (28) Lewis and Pule. (29) 

The Kac density for the IBG can be summaried as 

[ ~(X -- p), P < Pc 

= J o, x < oc, K(x,p)  (Bl l )  
1[ ( P - P c ) - l e x p ( x - p c )  P>Pc 

For p > pc and with K(x,p) given by (Bll), Eq. (B4) relating Xg(a,p, T) to 
X(p, T) is basically a Laplace transform. The inverse Laplace transform 
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thus yields 

1 ~dte(~ 1 ,T)  (B12) x(o,  T) = ~ t 7 

where the contour of integration goes around the origin in the positive 
sense. Using the Kac density, the bulk limit of grand canonical density 
matrices, and the inverse formula (B12) enables us to write down the 
s-particle density matrix in the canonical ensemble 

S 

I I  A (lr~ - r ' i  , oz, T ), p < & 
P(r"} i=1 

k exp{mln[ t (P-&) l}  (B13) os(r,,,r,,So~,T)= ~ ( 1  
$-~i 9 6 m,  p ,s} m=O " 

• r I  [(AIr ' /-r" o T ) +  1 1 i ,v, -7 ' P > & 
i=1 

where 

A( i r$_rTi , a ,T)_  1 ~, exp(-c~J) exp(_ ~r , = V  j : l  j3/2 j-:-~ Iri - r712/] (B14) 

As Ir'l - r[I---> ~ ,  A --> 0. Hence, the single-particle density matrix becomes 

pl(ri 'rf ' p' T ) --> ( O'p - & , P < > Pc (BI5) 

The two-particle density matrix is given in the off-diagonal limit by 

0, O < Pc (B16) 
02 --> (p  __ pc)2 ' 10 > Pc 

The diagonal element of 02 is the two-particle distribution function 

{ O2 +[A(Irl-r:l , ,~,T)] 2, P<Oc 
n2(r 1 ,r 2 ,p,  T )  = p 2 + 2 (0  - 0c)A (It, - rd ,0 ,  T )  (B17)  

+ [A(I r l -  rd,0, T)] = 0>0c 

It, -r=l-~ ~ ,  n=-+02- - n l ( q ) x  nl(r2). The two-particle distribution A s  
function has the product property. Thus, the Ursell functions defined by 

nI(rl) = Ul(rl) (B18) 

n2(rl, r2) = U2(r I , r2) + Ul(r 0 U2(r2) 
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must have the cluster property, i.e., U2(rl, r2) --) 0 in the limit [r 1 - r2l --) ~ .  
Physically, this implies that there is no diagonal long-range order (DLRO) 
in the canonical ensemble. In other words, there is no phase separation (3~ 
in spite of the fact that the form of Kac density rigorously implies the 
equivalence of bulk thermodynamic properties in the two different en- 
sembles. 

The canonical ensemble s-particle density matrix in the off-diagonal 
limit is 

0, p < 0c 
(B19) 

P s =  ( P - - P c )  s , P > P c  

In the off-diagonal limit, I r' - r" I -> ~ ,  the s-particle density matrix for the 
ideal Bose gas in the grand canonical ensemble can be shown to be 

pgrtr'S r 's - T~ = [ 0, P < Pc (B20) 
s \ , , r ,  I l s ! ( P - - P c )  s, P)Pc 

The above results imply that in the grand canonical ensemble, the 
s-particle distribution function does not have the product property for 
P > Pc. In fact, in the limit where all the coordinates are widely separate the 
corresponding Ursell functions are given by 

( o, p < pc 
(B21) ( 

2, 0 > p c  

Therefore, the grand canonical system exhibits diagonal long-range order 
(DLRO) and there is a phase separation. 

To summarize, the ideal Bose systems do not exhibit diagonal long- 
range order in the canonical ensemble, but do so in the grand canonical. In 
other words, no phase separation exists in the former as in the latter. 
However, the form the Kac density rigorously implies the equivalence of 
bulk thermodynamic properties in the canonical and the grand canonical 
ensembles. We can relate this situation to the contrasting numerical results 
of Section 3.1 and 3.3 for the canonical ensemble. On one hand, the 
volume-independent cluster integrals of IBS lead to a bimodality in the 
cluster weight distribution, thereby reflecting the existence of DLRO, 
whereas the exact volume-dependent bt(T, V) do not lead to a phase 
separation. On the other hand, as N increases, thermodynamic quantities 
such as pressure and specific heat calculated with both the volume- 
dependent and the volume-independent cluster integrals tend to agree 
reasonably well over the range of densities (see Section 3.1) considered in 
this paper. 
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